Steven Meex

Clinical Chemist

Dr Steven Meex is a clinical chemist and head of the unit general clinical chemistry and hematology of the Central Diagnostic Laboratory of Maastrcith UMC+. He graduated in 2002 with specialisation in both molecular biology and epidemiology at Maastricht University. During his PhD at the Department of Internal Medicine in Maastricht, he worked on the cardiovascular genetics including type 2 diabetes and hyperlipidemia. Subsequently, he worked as acardiovascular research fellow at San Diego State University (2006) and at New York University (2008-2009).

His current research is focussed on cardiac markers,combining epidemiology, cell biology, analytical chemistry, and patient studies to improve the diagnosis and treatment of cardiovascular diseases.

Central Diagnostic Laboratory
P. Debyelaan 25, 6229 HX Maastricht 
PO Box 5800, 6202 AZ Maastricht
Room number: 5.E2.002
T: +31(0)43 387 47 09

  • 2024
    • Heyens, L., Kenjic, H., Dagnelie, P., Schalkwijk, C., Stehouwer, C., Meex, S., Kooman, J., Bekers, O., van Greevenbroek, M., Savelberg, H., Robaeys, G., de Galan, B., Koster, A., van Dongen, M., Eussen, S., & Koek, G. (2024). Forns index and fatty liver index, but not FIB-4, are associated with indices of glycaemia, pre-diabetes and type 2 diabetes: analysis of The Maastricht Study. BMJ Open Gastroenterology, 11(1), Article e001466. https://doi.org/10.1136/bmjgast-2024-001466
    • Martens, R. J. H., van Doorn, W. P. T. M., Leers, M. P. G., Meex, S. J. R., & Helmich, F. (2024). Unraveling Uncertainty: The Impact of Biological and Analytical Variation on the Prediction Uncertainty of Categorical Prediction Models. Journal of Applied Laboratory Medicine, Article jfae115. Advance online publication. https://doi.org/10.1093/jalm/jfae115
    • Ghossein, M. A., de Kok, J. W. T. M., Eerenberg, F., van Rosmalen, F., Boereboom, R., Duisberg, F., Verharen, K., Sels, J. E. M., Delnoij, T., Geyik, Z., Mingels, A. M. A., Meex, S. J. R., van Kuijk, S. M. J., van Stipdonk, A. M. W., Ghossein, C., Prinzen, F. W., van der Horst, I. C. C., Vernooy, K., van Bussel, B. C. T., & Driessen, R. G. H. (2024). Monitoring of myocardial injury by serial measurements of QRS area and T area: The MaastrICCht cohort. Annals of Noninvasive Electrocardiology, 29(5), Article e70001. https://doi.org/10.1111/anec.70001
    • van der Mee, F. A. M., Schaper, F., Jansen, J., Bons, J. A. P., Meex, S. J. R., & Cals, J. W. L. (2024). Enhancing Patient Understanding of Laboratory Test Results: Systematic Review of Presentation Formats and Their Impact on Perception, Decision, Action, and Memory. Journal of Medical Internet Research, 26, Article e53993. https://doi.org/10.2196/53993
    • Jaffe, A. S., Meex, S. J. R., Saenger, A. K., & van Wijk, X. M. R. (2024). A special series on cardiac troponin: An analytical and clinical matter. Journal of Laboratory and Precision Medicine, 9, Article 11. https://doi.org/10.21037/jlpm-24-29
    • Aakre, K. M., Apple, F. S., Mills, N. L., Meex, S. J. R., Collinson, P. O., & International Federation of Clinical Chemistry Committee on Clinical Applications of Cardiac Biomarkers (IFCC C-CB) (2024). Lower Limits for Reporting High-Sensitivity Cardiac Troponin Assays and Impact of Analytical Performance on Patient Misclassification. Clinical Chemistry, 70(3), 497-505. Article hvad185. https://doi.org/10.1093/clinchem/hvad185
    • van Doorn, W. P. T. M., Helmich, F., van Dam, P. M. E. L., Jacobs, L. H. J., Stassen, P. M., Bekers, O., & Meex, S. J. R. (2024). Explainable Machine Learning Models for Rapid Risk Stratification in the Emergency Department: A Multicenter Study. Journal of Applied Laboratory Medicine, 9(2), 212-222. Article jfad094. https://doi.org/10.1093/jalm/jfad094
    • van Dam, P. M. E. L., van Doorn, W. P. T. M., van Gils, F., Sevenich, L., Lambriks, L., Meex, S. J. R., Cals, J. W. L., & Stassen, P. M. (2024). Machine learning for risk stratification in the emergency department (MARS-ED) study protocol for a randomized controlled pilot trial on the implementation of a prediction model based on machine learning technology predicting 31-day mortality in the emergency department. Scandinavian Journal of Trauma Resuscitation & Emergency Medicine, 32(1), Article 5. https://doi.org/10.1186/s13049-024-01177-2
    • de Kok, J. W. T. M., van Rosmalen, F., Koeze, J., Keus, F., van Kuijk, S. M. J., Castela Forte, J., Schnabel, R. M., Driessen, R. G. H., van Herpt, T. T. W., Sels, J.-W. E. M., Bergmans, D. C. J. J., Lexis, C. P. H., van Doorn, W. P. T. M., Meex, S. J. R., Xu, M., Borrat, X., Cavill, R., van der Horst, I. C. C., & van Bussel, B. C. T. (2024). Deep embedded clustering generalisability and adaptation for integrating mixed datatypes: two critical care cohorts. Scientific Reports, 14(1), Article 1045. https://doi.org/10.1038/s41598-024-51699-z
  • 2023
    • van Dam, P. M. E. L., Lievens, S., Zelis, N., van Doorn, W. P. T. M., Meex, S. J. R., Cals, J. W. L., & Stassen, P. M. (2023). Head-to-head comparison of 19 prediction models for short-term outcome in medical patients in the emergency department: a retrospective study. Annals of Medicine, 55(2), Article 2290211. https://doi.org/10.1080/07853890.2023.2290211